Atmospheric Chemistry

Prepared by Benjamin Cotts
Stanford University, Stanford, CA

IHY Workshop on
Advancing VLF through the Global AWESOME Network
Overview

- LEP Events
- Early/fast Events
- Gamma Ray Burst (GRB) Events
- Atmospheric Chemistry
LEP Event Properties

1. Onset delay ($\Delta t \sim 0.5\text{-}2\text{ s}$) between sferic and onset
2. Differential onset delay with respect to L-shell (~0.5s)
3. Onset duration ($t_d \sim 1\text{-}2\text{ s}$) of secondary ionization
4. Large ionospheric region of disturbance, ~ 2000 km
5. Occur very frequently
6. Recovery typically ~ 10-100 s
Recovery Signatures of LEP

Peter 2007

Pasko and Inan, 1994
Early VLF Event Properties

- Rapid onset delay ($\Delta t < 20$ ms)
- Rapid onset duration ($t_d < 20$ ms)
- Typically recover in ~ 30-200 s
- Event amplitudes ~ 0.2-0.8 dB, rarely > 1 dB
- Causative CGs < 50 km from perturbed path
 - Lateral extent of disturbances ~ 100 km

Source: [Johnson and Inan 1999]
Long Recovery Early/fast Events

23 February 2006

- NAU-Boston
- NAU-Taylor

NAU amplitude at Gander

~20 Minutes

~100 Sec

NAU phase at Gander

~14 Minutes

NAU amplitude at Boston

~15 Minutes

~200 sec

NAU phase at Boston
Gamma-Ray Bursts

- Associated with very energetic explosions
 - Collision of Neutron stars
 - Magnetar

- Typically lasts a few ms to several minutes

- Accidentally discovered by Vela-3 spacecraft in 1967
Massive Gamma-Ray Burst

Figure 1. The γ-ray flux versus time, showing the peak [Terasawa et al., 2005], oscillating tail [Hurley et al., 2005] and the afterglow ($\propto t^{-0.85}$ [Mereghetti et al., 2005]).

From Inan et al. 2007
Second Timescale Characteristics

From Inan et al. 2007
Hour Timescale Characteristic

Recovery lasts for over 1 hour!

From Inan et al. 2007
Overview

- Ionospheric chemistry
 - Model Framework
 - Constituents/Parameters
Chemistry Model: Species

Electrons:
- N_e - Electrons
- N^+ - Light positive ions
- N_x^+ - Heavy positive ions (cluster)
- N^- - Light negative ions
- N_x^- - Heavy negative ions (cluster)

Light positive ions:
- O_2^+, N_2^+, NO_2^+

Light negative ions:
- O^-, O_2^-

Heavy positive ions:
- $H^+(H_2O)_n$

Heavy negative ions:
- NO_3^-, $NO_3^-(H_2O)_n$

Not part of the model, just illustrative:

Neutrals:

H_2O:

\[\text{Not part of the model, just illustrative:} \]
\(N_e \xrightarrow{\beta} N^- \)

\(N^- \xrightarrow{\gamma} N_e \)

\(N_x^- \xrightarrow{\gamma_x} N_e \)

\(N^+ + N_e \xrightarrow{\alpha_{d}} \text{Neutral} \)

\(N^+ + N_e \xrightarrow{\alpha_{d}^c} \text{Neutral} \)

\(*N^+ + N^- \xrightarrow{\alpha_i} \text{Neutral} \)

\(N_x^+ + N^- \xrightarrow{\alpha_i} \text{Neutral} \)

\(N^+ + N_x^- \xrightarrow{\alpha_i} \text{Neutral} \)

\(N_x^+ + N_x^- \xrightarrow{\alpha_i} \text{Neutral} \)

\(N^- + \text{nH}_2\text{O} \xrightarrow{A} N_x^- \)

\(N^+ + \text{nH}_2\text{O} \xrightarrow{B} N_x^+ \)

\(\beta \) - attachment:

\(\gamma \) - detachment from light negative ions

\(\gamma_x \) - detachment from heavy negative ions

\(\alpha_i \) - mutual neutralization

\(\alpha_{d}, \alpha_{d}^c \) - dissociative recombination

\(A \) - rate of conversion \(N^- \rightarrow N_x^- \)

\(B \) - rate of conversion \(N^+ \rightarrow N_x^+ \)
Model of Ionospheric Chemistry

- 5 constituents:
 - N_e - electrons
 - N^+ - light positive ions O_2^+, NO_2^+, N_2^+, ...
 - N_x^+ - positive ion clusters $H^+(H_2O)_n$
 - N^- - light negative ions O^-, O_2^-, ...
 - N_x^- - heavy negative ions NO_3^-, $NO_3^-(H_2O)_n$

Coefficients:
- α_i - mutual neutralization
- α_d, α_d^c - dissociative recombination
- β - attachment:
 - 3-body and 2-body (in E)
- γ - detachment from light negative ions (value uncertain):
 - Electron affinity=0.4 eV \rightarrow highly dependent on T
 - During daytime: photodetachment=0.4 s$^{-1}$
 - Also due to active species, N_{ac}: O, N, $O_2(a^1\Delta_g)$
- γ_x - detachment from heavy negative ions, approximately=0 (electron affinity = 3.91 eV), photodetachment = 0.002 s$^{-1}$ (during daytime)
- B - rate of conversion $N^+ \rightarrow N_x^+$
- A - rate of conversion $N^- \rightarrow N_x^-$
- Q – Ionization source; Cosmic ray only source at low altitudes Q_{cr} (peaks at \sim15 km)
- Recall Gamma-Ray Burst
- Relaxation matches model results, 2 stages:
 - Free electrons are quickly attached, $\tau_1 \sim (\gamma + \beta)^{-1}$
 - Positive and negative ions recombine, $\tau_2 \sim (\alpha_i N_i)^{-1} \sim 10^4$ s
Gamma-Ray Burst

- Ionization profile recovery
Bibliography

- Mitra, A. P. 1975
- Ferguson, 1979
- Arijs, 1992
- Glukhov et al., 1992
- Pasko and Inan, 1994
- Rodger et al., 1998
- Inan et al., 2007
- Lehtinen and Inan, 2007